Structural Testing of the Telling Industries, LLC True-Bridge Clip

Report submitted to:

Telling Industries, LLC 4420 Sherwin Rd. Willoughby, OH 44094

Report authorized by:

Rahim A. Zadeh, P.E. May 2020

www.BUILDSTRONG[®].com

4420 Sherwin Rd., Willoughby, OH 44094 **Phone:** 440-974-3370 | **Toll Free:** 866-372-6384 | **Fax:** 440-974-3408 **email:** sales.corp@tellingindustries.com

Table of Contents

Table of Contents	2
List of Figures	2
List of Tables	2
1 Introduction	3
2 Objective	3
3 Scope	3
4 Test Set-Up and Procedures	4
4.1 Test Standard	4
4.2 Test Set-up	4
5 Test Results and Analysis	5
5.1 Test Results	5
5.2 Calculation of the Safety Factor	8
6 Allowable Loads	8
6.1 Allowable Loads and Stiffness for Rotational Loading	8
6.2 Allowable Loads and Stiffness for Lateral Loading	9

List of Figures

Figure 1-1: Photograph of the True-Bridge Clips	3
Figure 4-1: Photograph Lateral Loading Test Set-Up	4
Figure 4-2: Photograph of the Rotational Loading Test Set-Up	5
Figure 5-1: Rotational Loading Plots for 362S162 Studs	6
Figure 5-2: Rotational Loading Plots for 600S162 Studs	6
Figure 5-3: Lateral Loading Plots for 362S162 Studs	7
Figure 5-4: : Lateral Loading Plots for 600S162 Studs	7

List of Tables

3
8
9
9
9

Structural Testing of the Telling Industries, LLC True-Bridge Clip

1 Introduction

Telling Industries produces a line of cold-formed steel framing members and related components including the True-Bridge Clips. These clips are used as connect lateral bridging to studs. The connections are made with self-drilling screws through the pre-drilled holes in the clip. The photograph in Figure 1-1 shows the True-Bridge Terminating and Joining Clips.

Figure 1-1: Photograph of the True-Bridge Clips

2 Objective

The objective of the work described in this report was to test combinations of the True-Bridge clips attached to different sizes of streel studs. The clips were subjected to lateral and rotational loading. These test results can be used to determine allowable loads for these connectors to be used in an engineered design.

3 Scope

A test matrix was determined based on providing a representative number of tests covering the range of products offered. Listed in Table 3-1 is the test matrix.

Clip Type	Stud Size	Stud Thickness (mils)
True-Bridge	2628162	68
	5025102	97
18 ga.	600S162	68
		97

Table	3-1:	Test	Matrix

4 Test Set-Up and Procedures

4.1 Test Standard

The test procedure used was developed by Telling based on industry practice for similar types of connectors.

4.2 Test Set-up

The photograph in Figure 4-1 shows the lateral loading set-up. The bridging channel was connected to a 4 ft. length of stud through the punch-out using the True-Bridge clip. The lateral load was applied with an actuator and measured with a load cell position between the actuator and the channel. The lateral deflection of the bridging channel relative to the stud was measured periodically using a digital caliper.

Figure 4-1: Photograph Lateral Loading Test Set-Up

The photograph in Figure 4-2 shows the rotational loading set-up. The bridging channel was connected to a 4 ft. length of stud through the punch-out using the True-Bridge clip. The rotational load was applied with an actuator pushing on both ends of the channel. The load was measured with a load cell positioned between each actuator and the channel. The deflection of the channel relative to the stud was measured using a displacement transducer attached to each end of the channel. The loads were applied to the channel 8 in. away from the stud. The deflections were measured at the point of load application by displacement transducers.

Figure 4-2: Photograph of the Rotational Loading Test Set-Up

5 Test Results and Analysis

5.1 Test Results

The plots of the rotational load tests are given in Figures 5-1 and 5-2 for the 362S162 and 600S162 stud sizes respectively. The plots of the lateral load tests are given in Figures 5-3 and 5-4 for the 362S162 and 600S162 stud sizes respectively.

Figure 5-1: Rotational Loading Plots for 362S162 Studs

Figure 5-2: Rotational Loading Plots for 600S162 Studs

Figure 5-3: Lateral Loading Plots for 362S162 Studs

Figure 5-4: : Lateral Loading Plots for 600S162 Studs

5.2 Calculation of the Safety Factor

The tested strengths are required to be reduced by a safety factor, Ω , determined in accordance with the provisions of AISI S100 using the statistical parameters based on "Other Connections and Fasteners". The first step is to determine the resistance factor using Eq. 5-1 reproduced from S100.

$$\begin{split} \varphi &= C_{\varphi} \Big(M_m F_m P_m \Big) e^{-\beta_0} \sqrt{V_M^2 + V_F^2 + C_P V_P^2 + V_Q^2} \end{split} \hspace{2cm} \text{Eq. 5-1} \\ \end{split} \\ \text{where,} \\ \begin{array}{rcl} C_{\phi} &=& 1.52 \\ M_m &=& 1.0 \\ F_m &=& 1.0 \\ P_m &=& 1.0 \\ \beta_0 &=& 2.5 \\ V_M &=& 0.10 \\ V_F &=& 0.05 \\ C_P &=& (1+1/n)m/(m-2) \text{ for } n \geq 4 \\ n &=& number \text{ of tests} \\ m &=& degrees \text{ of freedom} = n-1 \\ V_P &=& COV \text{ of test results} \geq 0.065 \\ \end{split}$$

Once the resistance factor is determined using Eq. 5-1, the corresponding safety factor is calculated as follows:

$$\Omega = 1.6/\phi$$

Vo

= 0.21

Eq. 5-2

6 Allowable Loads

6.1 Allowable Loads and Stiffness for Rotational Loading

The allowable rotational loads for the 18-gauge True-Bridge clip connecting a 16-gauge bridging channel to the various stud sizes are given in Table 6-1. The rotational stiffnesses for these same connections are given in Table 6-2. The stiffness is calculated based on the average of deflection divided by the load for all data points shown in Figures 5-1 and 5-2.

CFS	Ultimate Moment (in-lbs)				COV		Allowable
Member	Test #1	Test #2	Test #3	Average	COV	22	(in-lbs)
362S162-68	1197	1146	1162	1168	0.022	2.141	546
362S162-97	1668	1656	1620	1648	0.015	2.141	770
600S162-68	1193	1314	1277	1261	0.049	2.141	589
600S162-97	2086	1936	2013	2011	0.037	2.141	939

CFS	Stiffness (in-lbs/radian)				
Member	ember Test #1 Test #2 Test		Test #3	Average	
362S162-68	5112	4642	5043	4932	
362S162-97	6990	6697	7230	6972	
600S162-68	4029	4019	4030	4026	
600S162-97	7327	7065	6900	7097	

 Table 6-2: Rotational Stiffness

6.2 Allowable Loads and Stiffness for Lateral Loading

The allowable lateral loads for the 18-gauge True-Bridge clip connecting a 16-gauge bridging channel to the various stud sizes are given in Table 6-3. The lateral stiffnesses for these same connections are given in Table 6-4. The stiffness is calculated based on the deflection divided by the load at approximately 50% of the ultimate load.

CFS		Ultimate	Ultimate Load (lbs)				Allowable
Member	Test #1	Test #2	Test #3	Average		52	(lbs)
362S162-68	1224	1270	1309	1268	0.034	2.141	592
362S162-97	1562	1516	1527	1535	0.016	2.141	717
600S162-68	1311	1252	1372	1312	0.046	2.141	613
600S162-97	2233	2298	2367	2299	0.029	2.141	1074

Table 6-3: Allowable Lateral Loads

Table 6-4: Lateral Stiffness

CFS	Stiffness (lbs/in) at 0.5 P _{ult}					
Member	Test #1	Test #2	Test #3	Average		
362S162-68	1474	1058	1249	1260		
362S162-97	2348	1824	1821	1998		
600S162-68	1275	1505	23661	1390		
600S162-97	1915 ¹	4962	4188	4575		

1. These values were considered outliers and not included in the average.